TY - JOUR
T1 - Preclinical evaluation of [(18)F]PK-209, a new PET ligand for imaging the ion-channel site of NMDA receptors.
AU - Langermans, J.A.M.
PY - 2014/9/30
Y1 - 2014/9/30
N2 - IntroductionThe present study was designed to assess whether [(18)F]PK-209 (3-(2-chloro-5-(methylthio)phenyl)-1-(3-([(18)F]fluoromethoxy)phenyl)-1-methylguanidine) is a suitable ligand for imaging the ion-channel site of N-methyl-D-aspartate receptors (NMDArs) using positron emission tomography (PET).MethodsDynamic PET scans were acquired from male rhesus monkeys over 120min, at baseline and after the acute administration of dizocilpine (MK-801, 0.3mg/kg; n=3/condition). Continuous and discrete arterial blood samples were manually obtained, to generate metabolite-corrected input functions. Parametric volume-of-distribution (VT) images were obtained using Logan analysis. The selectivity profile of PK-209 was assessed in vitro, on a broad screen of 79 targets.ResultsPK-209 was at least 50-fold more selective for NMDArs over all other targets examined. At baseline, prolonged retention of radioactivity was observed in NMDAr-rich cortical regions relative to the cerebellum. Pretreatment with MK-801 reduced the VT of [(18)F]PK-209 compared with baseline in two of three subjects. The rate of radioligand metabolism was high, both at baseline and after MK-801 administration.ConclusionsPK-209 targets the intrachannel site with high selectivity. Imaging of the NMDAr is feasible with [(18)F]PK-209, despite its fast metabolism. Further in vivo evaluation in humans is warranted.
AB - IntroductionThe present study was designed to assess whether [(18)F]PK-209 (3-(2-chloro-5-(methylthio)phenyl)-1-(3-([(18)F]fluoromethoxy)phenyl)-1-methylguanidine) is a suitable ligand for imaging the ion-channel site of N-methyl-D-aspartate receptors (NMDArs) using positron emission tomography (PET).MethodsDynamic PET scans were acquired from male rhesus monkeys over 120min, at baseline and after the acute administration of dizocilpine (MK-801, 0.3mg/kg; n=3/condition). Continuous and discrete arterial blood samples were manually obtained, to generate metabolite-corrected input functions. Parametric volume-of-distribution (VT) images were obtained using Logan analysis. The selectivity profile of PK-209 was assessed in vitro, on a broad screen of 79 targets.ResultsPK-209 was at least 50-fold more selective for NMDArs over all other targets examined. At baseline, prolonged retention of radioactivity was observed in NMDAr-rich cortical regions relative to the cerebellum. Pretreatment with MK-801 reduced the VT of [(18)F]PK-209 compared with baseline in two of three subjects. The rate of radioligand metabolism was high, both at baseline and after MK-801 administration.ConclusionsPK-209 targets the intrachannel site with high selectivity. Imaging of the NMDAr is feasible with [(18)F]PK-209, despite its fast metabolism. Further in vivo evaluation in humans is warranted.
UR - https://doi.org/10.1016/j.nucmedbio.2014.09.006
U2 - 10.1016/j.nucmedbio.2014.09.006
DO - 10.1016/j.nucmedbio.2014.09.006
M3 - Article
C2 - 25451213
SN - 0969-8051
JO - Nuclear Medicine and Biology
JF - Nuclear Medicine and Biology
ER -