Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a large impact on global health, travel, and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated monoclonal antibodies from three convalescent coronavirus disease 2019 (COVID-19) patients using a SARS-CoV-2 stabilized prefusion spike protein. These antibodies had low levels of somatic hypermutation and showed a strong enrichment in VH1-69, VH3-30-3, and VH1-24 gene usage. A subset of the antibodies was able to potently inhibit authentic SARS-CoV-2 infection at a concentration as low as 0.007 micrograms per milliliter. Competition and electron microscopy studies illustrate that the SARS-CoV-2 spike protein contains multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as non-RBD epitopes. In addition to providing guidance for vaccine design, the antibodies described here are promising candidates for COVID-19 treatment and prevention.
Original language | English |
---|---|
Pages (from-to) | 643-650 |
Number of pages | 8 |
Journal | Science (New York, N.Y.) |
Volume | 369 |
Issue number | 6504 |
DOIs | |
Publication status | Published - 7 Aug 2020 |
Externally published | Yes |
Keywords
- Adult
- Aged
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antibody Affinity
- Antigens, Viral/immunology
- B-Lymphocyte Subsets/immunology
- Betacoronavirus/immunology
- Broadly Neutralizing Antibodies/immunology
- COVID-19
- Cell Line, Tumor
- Coronavirus Infections/immunology
- Epitopes/immunology
- Female
- Humans
- Immunologic Memory
- Immunophenotyping
- Male
- Middle Aged
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Protein Domains
- Protein Interaction Domains and Motifs/immunology
- Receptors, Coronavirus
- Receptors, Virus/metabolism
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry