TY - JOUR
T1 - Positive feedbacks in seagrass ecosystems
T2 - Implications for success in conservation and restoration
AU - Van Der Heide, Tjisse
AU - Van Nes, Egbert H.
AU - Geerling, Gertjan W.
AU - Smolders, Alfons J.P.
AU - Bouma, Tjeerd J.
AU - Van Katwijk, Marieke M.
PY - 2007/12
Y1 - 2007/12
N2 - Seagrasses are threatened by human activity in many locations around the world. Their decline is often characterized by sudden ecosystem collapse from a vegetated to a bare state. In the 1930s, such a dramatic event happened in the Dutch Wadden Sea. Before the shift, large seagrass beds (Zostera marina) were present in this area. After the construction of a large dam and an incidence of the "wasting disease" in the early 1930s, these meadows became virtually extinct and never recovered despite restoration attempts. We investigated whether this shift could be explained as a critical transition between alternative stable states, and whether the lack of recovery could be due to the high resilience of the new turbid state. We analyzed the depth distribution of the historical meadows, a long-term dataset of key factors determining turbidity and a minimal model based on these data. Results demonstrate that recovery was impossible because turbidity related to suspended sediment was too high, probably because turbidity was no longer reduced by seagrass itself. Model simulations on the positive feedback suggest indeed the robust occurrence of alternative stable states and a high resilience of the current turbid state. As positive feedbacks are common in seagrasses, our findings may explain both the worldwide observed collapses and the low success rate of restoration attempts of seagrass habitats. Therefore, appreciation of ecosystem resilience may be crucial in seagrass ecosystem management.
AB - Seagrasses are threatened by human activity in many locations around the world. Their decline is often characterized by sudden ecosystem collapse from a vegetated to a bare state. In the 1930s, such a dramatic event happened in the Dutch Wadden Sea. Before the shift, large seagrass beds (Zostera marina) were present in this area. After the construction of a large dam and an incidence of the "wasting disease" in the early 1930s, these meadows became virtually extinct and never recovered despite restoration attempts. We investigated whether this shift could be explained as a critical transition between alternative stable states, and whether the lack of recovery could be due to the high resilience of the new turbid state. We analyzed the depth distribution of the historical meadows, a long-term dataset of key factors determining turbidity and a minimal model based on these data. Results demonstrate that recovery was impossible because turbidity related to suspended sediment was too high, probably because turbidity was no longer reduced by seagrass itself. Model simulations on the positive feedback suggest indeed the robust occurrence of alternative stable states and a high resilience of the current turbid state. As positive feedbacks are common in seagrasses, our findings may explain both the worldwide observed collapses and the low success rate of restoration attempts of seagrass habitats. Therefore, appreciation of ecosystem resilience may be crucial in seagrass ecosystem management.
KW - Alternative stable states
KW - Ecosystem engineer
KW - Positive feedback
KW - Restoration
KW - Seagrass ecosystem
KW - Turbidity
KW - Wadden Sea
KW - Wasting disease
KW - Zostera marina
UR - http://www.scopus.com/inward/record.url?scp=37749034063&partnerID=8YFLogxK
U2 - 10.1007/s10021-007-9099-7
DO - 10.1007/s10021-007-9099-7
M3 - Article
AN - SCOPUS:37749034063
SN - 1432-9840
VL - 10
SP - 1311
EP - 1322
JO - Ecosystems
JF - Ecosystems
IS - 8
ER -