Abstract
Thermokarst lakes play an important role in permafrost environments by warming and insulating the underlying permafrost. As a result, thaw bulbs of unfrozen ground (taliks) are formed. Since these taliks remain perennially thawed, they are zones of increased degradation where microbial activity and geochemical processes can lead to increased greenhouse gas emissions from thermokarst lakes. It is not well understood though to what extent the organic carbon (OC) in different talik layers below thermokarst lakes is affected by degradation. Here, we present two transects of short sediment cores from two thermokarst lakes on the Arctic Coastal Plain of Alaska. Based on their physiochemical properties, two main talik layers were identified. A "lake sediment"is identified at the top with low density, sand, and silicon content but high porosity. Underneath, a "taberite"(former permafrost soil) of high sediment density and rich in sand but with lower porosity is identified. Loss on ignition (LOI) measurements show that the organic matter (OM) content in the lake sediment of 28±3 wt% (1σ, n = 23) is considerably higher than in the underlying taberite soil with 8±6 wt% (1σ, n = 35), but dissolved organic carbon (DOC) leaches from both layers in high concentrations: 40±14 mg L-1 (1σ, n = 22) and 60±14 mg L-1 (1σ, n = 20). Stable carbon isotope analysis of the porewater DOC (δ13CDOC) showed a relatively wide range of values from -30.74‰ to -27.11‰ with a mean of -28.57±0.92‰(1σ, n = 21) in the lake sediment, compared to a relatively narrow range of -27.58‰to -26.76‰ with a mean of -27.59±0.83‰(1σ, n = 21) in the taberite soil (one outlier at -30.74 ‰). The opposite was observed in the soil organic carbon (SOC), with a narrow δ13CSOC range from -29.15‰ to -27.72‰ in the lake sediment (-28.56±0.36 ‰, 1σ, n = 23) in comparison to a wider δ13CSOC range from -27.72‰ to -25.55‰ in the underlying taberite soil (-26.84±0.81 ‰, 1σ, n = 21). The wider range of porewater δ13CDOC values in the lake sediment compared to the taberite soil, but narrower range of comparative δ13CSOC, along with the δ13C-shift from δ13CSOC to δ13CDOC indicates increased stable carbon isotope fractionation due to ongoing processes in the lake sediment. Increased degradation of the OC in the lake sediment relative to the underlying taberite is the most likely explanation for these differences in δ13CDOC values. As thermokarst lakes can be important greenhouse gas sources in the Arctic, it is important to better understand the degree of degradation in the individual talik layers as an indicator for their potential in greenhouse gas release, especially, as predicted warming of the Arctic in the coming decades will likely increase the number and extent (horizontal and vertical) of thermokarst lake taliks.
Original language | English |
---|---|
Pages (from-to) | 2241-2258 |
Number of pages | 18 |
Journal | Biogeosciences |
Volume | 18 |
Issue number | 7 |
DOIs | |
Publication status | Published - 6 Apr 2021 |
Bibliographical note
Funding Information:Acknowledgements. Facilities for magnetic susceptibility, gamma-ray density, TGA, and grain size analysis were provided by the Vrije Universiteit Amsterdam; the latter two were supported by Unze van Buuren and Martine Hagen from the sediment laboratory. Thanks are due to UIC Science, especially Nagruk Har-charek in Utqiag˙vik, Alaska, for the support during both field trips. The DOC and δ13CDOC analyses were carried out by Steven Bouillon and Cedric Morana from KU Leuven, Belgium. The δ13C analyses of the refiltered samples were measured by Richard van Logtestijn at the Department of Systems Ecology of the Vrije Universiteit Amsterdam. The δ13CSOC analyses were carried out by Suzan Verdegaal-Warmerdam from the Stable Isotope Laboratory of the Vrije Universiteit Amsterdam. Core splitting and XRF scanning of the cores were done at the NIOZ, Texel, Netherlands, with the help of Rineke Gieles and Piet van Gaever. We thank the editor Yakov Kuzyakov and the two anonymous referees for the improvement of this paper.
Publisher Copyright:
© Author(s) 2021.
Funding
Acknowledgements. Facilities for magnetic susceptibility, gamma-ray density, TGA, and grain size analysis were provided by the Vrije Universiteit Amsterdam; the latter two were supported by Unze van Buuren and Martine Hagen from the sediment laboratory. Thanks are due to UIC Science, especially Nagruk Har-charek in Utqiag˙vik, Alaska, for the support during both field trips. The DOC and δ13CDOC analyses were carried out by Steven Bouillon and Cedric Morana from KU Leuven, Belgium. The δ13C analyses of the refiltered samples were measured by Richard van Logtestijn at the Department of Systems Ecology of the Vrije Universiteit Amsterdam. The δ13CSOC analyses were carried out by Suzan Verdegaal-Warmerdam from the Stable Isotope Laboratory of the Vrije Universiteit Amsterdam. Core splitting and XRF scanning of the cores were done at the NIOZ, Texel, Netherlands, with the help of Rineke Gieles and Piet van Gaever. We thank the editor Yakov Kuzyakov and the two anonymous referees for the improvement of this paper.