Petrologic history of lunar phosphates accounts for the water content of the moon’s mare basalts

Antonio M. Álvarez-Valero, John F. Pernet-Fisher, Leo M. Kriegsman

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We present reaction balancing and thermodynamic modeling based on microtextural observations and mineral chemistry, to constrain the history of phosphate crystallization within two lunar mare basalts, 10003 and 14053. Phosphates are typically found within intercumulus melt pockets (mesostasis), representing the final stages of basaltic crystallization. In addition to phosphates, these pockets typically consist of Fe-rich clinopyroxene, fayalite, plagioclase, ilmenite, SiO2, and a residual K-rich glass. Some pockets also display evidence for unmixing into two immiscible melts: A Si-K-rich and an Fe-rich liquid. In these cases, the crystallization sequence is not always clear. Despite petrologic complications associated with mesostasis pockets (e.g., unmixing), the phosphates (apatite and merrillite) within these areas have been recently used for constraining the water content in the lunar mantle. We compute mineral reaction balancing for mesostasis pockets from Apollo high-Ti basalt 10003 and high-Al basalt 14053 to suggest that their parental magmas have an H2O content of 25 ± 10 ppm, consistent with reported estimates based on directly measured H2O abundances from these samples. Our results permit to constrain in which immiscible liquid a phosphate of interest crystallizes, and allows us to estimate the extent to which volatiles may have partitioned into other phases such as K-rich glass or surrounding clinopyroxene and plagioclase using a non-destructive method.

Original languageEnglish
Article number421
Number of pages21
JournalGeosciences
Volume9
Issue number10
DOIs
Publication statusPublished - 28 Sept 2019

Keywords

  • Apatite
  • Apollo
  • Lunar hydration
  • Mare basalt
  • Mass balance
  • Mesostasis
  • Planetary geology

Fingerprint

Dive into the research topics of 'Petrologic history of lunar phosphates accounts for the water content of the moon’s mare basalts'. Together they form a unique fingerprint.

Cite this