Periodic Center Manifolds for Nonhyperbolic Limit Cycles in ODEs

Bram Lentjes, Mattias Windmolders, Yuri A. Kuznetsov

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

In this paper, we deal with a classical object, namely, a nonhyperbolic limit cycle in a system of smooth autonomous ordinary differential equations. While the existence of a center manifold near such a cycle was assumed in several studies on cycle bifurcations based on periodic normal forms, no proofs were available in the literature until recently. The main goal of this paper is to give an elementary proof of the existence of a periodic smooth locally invariant center manifold near a nonhyperbolic cycle in finite-dimensional ordinary differential equations by using the Lyapunov-Perron method. In addition, we provide several explicit examples of analytic vector fields admitting (non)-unique, (non)-C-smooth and (non)-analytic periodic center manifolds.

Original languageEnglish
Article number2350184
Number of pages29
JournalInternational Journal of Bifurcation and Chaos
Volume33
Issue number15
DOIs
Publication statusPublished - 15 Dec 2023

Keywords

  • Center manifold theorem
  • nonhyperbolic cycle
  • ordinary differential equation

Fingerprint

Dive into the research topics of 'Periodic Center Manifolds for Nonhyperbolic Limit Cycles in ODEs'. Together they form a unique fingerprint.

Cite this