Performance of the front-end electronics of the ANTARES neutrino telescope

J.A. Aguilar, P. Kooijman

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated
Original languageEnglish
Pages (from-to)59-73
Number of pages15
JournalNuclear Instruments and Methods in Physics Research. Section A
Volume622
Issue number1
DOIs
Publication statusPublished - 2010

Fingerprint

Dive into the research topics of 'Performance of the front-end electronics of the ANTARES neutrino telescope'. Together they form a unique fingerprint.

Cite this