Performance Measures for Sample Selection Bias Correction by Weighting

An-Chiao Liu*, Sander Scholtus, Katrijn Van Deun, Ton de Waal

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

When estimating a population parameter by a nonprobability sample, that is, a sample without a known sampling mechanism, the estimate may suffer from sample selection bias. To correct selection bias, one of the often-used methods is assigning a set of unit weights to the nonprobability sample, and estimating the target parameter by a weighted sum. Such weights are often obtained with classification methods. However, a tailor-made framework to evaluate the quality of the assigned weights is missing in the literature, and the evaluation framework for prediction may not be suitable for population parameter estimation by weighting. We try to fill in the gap by discussing several promising performance measures, which are inspired by classical calibration and measures of selection bias. In this paper, we assume that the population parameter of interest is the population mean of a target variable. A simulation study and real data examples show that some performance measures have a strong positive relationship with the mean squared error and/or error of the estimated population mean. These performance measures may be helpful for model selection when constructing weights by logistic regression or machine learning algorithms.
Original languageEnglish
JournalJournal of Official Statistics
DOIs
Publication statusE-pub ahead of print - 14 Mar 2025

Fingerprint

Dive into the research topics of 'Performance Measures for Sample Selection Bias Correction by Weighting'. Together they form a unique fingerprint.

Cite this