TY - JOUR
T1 - Perception and Action in Depth
AU - Carey, D. P.
AU - Dijkerman, H. C.
AU - Milner, A. D.
N1 - Funding Information:
We thank Andy Burnley and Peter Wilcox for expert technical assistance. Philip Surette and Yaoping Hu developed software for the analysis of Optotrak data, which was kindly provided by Mel Goodale. DPC was supported by a Teaching/Research Fellowship from the University of St. Andrews. We are grateful to DF, BP, and VM for their most patient cooperation in the studies. This project was generously supported by a grant from the Wellcome Trust to ADM.
PY - 1998/9
Y1 - 1998/9
N2 - Little is known about distance processing in patients with posterior brain damage. Although many investigators have claimed that distance estimates are normal or abnormal in some of these patients, many of these observations were made informally and the examiners often asked for relative, and not absolute, distance estimates. The present investigation served two purposes. First, we wanted to contrast the use of distance information in peripersonal space for perceptual report as opposed to visuomotor control in our visual form agnosic patient, DF. Second, we wanted to see to what extent her abilities to process distance cues were dependent on binocular vision, in light of Milner et al.'s (1991) observations of preserved stereopsis in DF, and Dijkerman et al.'s (1996) and Marotta et al.'s (1997) observations that her visual guidance of grasping may be particularly dependent on binocular vision of the target. We hypothesized that DF's visuomotor responses would show normal sensitivity to target distance, while her perceptual estimates would not. In the first experiment, we required DF and two age- and sex-matched control subjects to reach out and grasp black cubes placed at varying distances, or to estimate the distance of the cubes from the hand starting position without making a reaching movement. In the second experiment, we required DF and two age-matched control subjects to point as rapidly and accurately as possible to small LED targets which differed in spatial location, under binocular and monocular conditions. The results showed that, relative to the control subjects, DF's grasping movements produced normal peak velocity - distance scaling - when she reached for blocks which varied in depth or pointed to LED targets which were presented at different distances in depth. In contrast, in the cube experiment, her verbal estimates of object distance were poorly scaled, although they improved slightly under the binocular conditions. The results are discussed in terms of current theories of processing streams in extrastriate visual cortex and the distinction between categorical and coordinate spatial processing.
AB - Little is known about distance processing in patients with posterior brain damage. Although many investigators have claimed that distance estimates are normal or abnormal in some of these patients, many of these observations were made informally and the examiners often asked for relative, and not absolute, distance estimates. The present investigation served two purposes. First, we wanted to contrast the use of distance information in peripersonal space for perceptual report as opposed to visuomotor control in our visual form agnosic patient, DF. Second, we wanted to see to what extent her abilities to process distance cues were dependent on binocular vision, in light of Milner et al.'s (1991) observations of preserved stereopsis in DF, and Dijkerman et al.'s (1996) and Marotta et al.'s (1997) observations that her visual guidance of grasping may be particularly dependent on binocular vision of the target. We hypothesized that DF's visuomotor responses would show normal sensitivity to target distance, while her perceptual estimates would not. In the first experiment, we required DF and two age- and sex-matched control subjects to reach out and grasp black cubes placed at varying distances, or to estimate the distance of the cubes from the hand starting position without making a reaching movement. In the second experiment, we required DF and two age-matched control subjects to point as rapidly and accurately as possible to small LED targets which differed in spatial location, under binocular and monocular conditions. The results showed that, relative to the control subjects, DF's grasping movements produced normal peak velocity - distance scaling - when she reached for blocks which varied in depth or pointed to LED targets which were presented at different distances in depth. In contrast, in the cube experiment, her verbal estimates of object distance were poorly scaled, although they improved slightly under the binocular conditions. The results are discussed in terms of current theories of processing streams in extrastriate visual cortex and the distinction between categorical and coordinate spatial processing.
UR - http://www.scopus.com/inward/record.url?scp=0001194351&partnerID=8YFLogxK
U2 - 10.1006/ccog.1998.0366
DO - 10.1006/ccog.1998.0366
M3 - Article
C2 - 9787054
AN - SCOPUS:0001194351
SN - 1053-8100
VL - 7
SP - 438
EP - 453
JO - Consciousness and Cognition
JF - Consciousness and Cognition
IS - 3
ER -