Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs

Michel G. J. Den Elzen, Detlef P. Van Vuuren

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

How can dangerous interference with the climate system be avoided? Science can help decision-makers answer this political question. Earlier publications have focused on the probability of keeping global mean temperature change below certain thresholds by stabilizing greenhouse gas concentrations at particular levels. We compare the results of such "stabilization profiles" with a set of "peaking profiles" that reduce emissions further after stabilization and thus result in a concentration peak. Given the inertia in the climate system, stabilization profiles lead to ongoing warming beyond 2100 until the temperature reaches equilibrium. This warming partly can be prevented for peaking profiles. In this way, these profiles can increase the likelihood of achieving temperature thresholds by 10-20% compared with the likelihood for the associated stabilization profiles. Because the additional mitigation efforts and thus costs for peaking profiles lie mainly beyond 2100, peaking profiles achieving temperature thresholds with the same likelihood as the original stabilization profile, but at considerably lower cost (up to 40%), can be identified. The magnitude of the cost reductions depends on the assumptions on discounting. Peaking profiles and overshoot profiles with a limited overshoot may, in particular, play an important role in making more ambitious climate targets feasible. © 2007 by The National Academy of Sciences of the USA.
Original languageEnglish
Pages (from-to)17931-17936
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume104
Issue number46
DOIs
Publication statusPublished - 13 Nov 2007

Keywords

  • Abatement costs
  • Climate change
  • Concentration stabilization
  • Integrated assessment model
  • Multigas emission pathway
  • carbon dioxide
  • aerosol
  • article
  • climate change
  • cost
  • gas diffusion
  • greenhouse gas
  • priority journal
  • temperature

Fingerprint

Dive into the research topics of 'Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs'. Together they form a unique fingerprint.

Cite this