Path Sampling Simulations Reveal How the Q61L Mutation Alters the Dynamics of KRas

Sander Roet, Ferry Hooft, Peter G. Bolhuis, David W. H. Swenson, Jocelyne Vreede*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Flexibility is essential for many proteins to function, but can be difficult to characterize. Experiments lack resolution in space and time, while the time scales involved are prohibitively long for straightforward molecular dynamics simulations. In this work, we present a multiple state transition path sampling simulation study of a protein that has been notoriously difficult to characterize in its active state. The GTPase enzyme KRas is a signal transduction protein in pathways for cell differentiation, growth, and division. When active, KRas tightly binds guanosine triphosphate (GTP) in a rigid state. The protein–GTP complex can also visit more flexible states, in which it is not active. KRas mutations can affect the conversion between these rigid and flexible states, thus prolonging the activation of signal transduction pathways, which may result in tumor formation. In this work, we apply path sampling simulations to investigate the dynamic behavior of KRas-4B (wild type, WT) and the oncogenic mutant Q61L (Q61L). Our results show that KRas visits several conformational states, which are the same for WT and Q61L. The multiple state transition path sampling (MSTPS) method samples transitions between the different states in a single calculation. Tracking which transitions occur shows large differences between WT and Q61L. The MSTPS results further reveal that for Q61L, a route to a more flexible state is inaccessible, thus shifting the equilibrium to more rigid states. The methodology presented here enables a detailed characterization of protein flexibility on time scales not accessible with brute-force molecular dynamics simulations.
Original languageEnglish
Pages (from-to)10034-10044
JournalJournal of Physical Chemistry B
Volume126
Issue number48
DOIs
Publication statusPublished - 25 Nov 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Path Sampling Simulations Reveal How the Q61L Mutation Alters the Dynamics of KRas'. Together they form a unique fingerprint.

Cite this