Abstract
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is O(logn) for any fixed k. Underlying these algorithms is a method to execute a breadth-first search in O(k) passes and O(klogn) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where Ω(n/p) bits of memory is needed for any p-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H, for most H. For some cases, we can also show one-pass, Ω(nlogn) bits of memory lower bounds. We also prove a much stronger Ω(n2/p) lower bound for Diameter on bipartite graphs.
Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k. This yields a kernel of 2k vertices (with O(k2) edges) produced as a stream in poly(k) passes and only O(klogn) bits of memory.
Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k. This yields a kernel of 2k vertices (with O(k2) edges) produced as a stream in poly(k) passes and only O(klogn) bits of memory.
Original language | English |
---|---|
Publisher | arXiv |
DOIs | |
Publication status | Published - 11 Jul 2022 |