TY - JOUR
T1 - Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2
AU - Marina-García, Noemí
AU - Franchi, Luigi
AU - Kim, Yun Gi
AU - Miller, Douglas
AU - McDonald, Christine
AU - Boons, Geert Jan
AU - Núñez, Gabriel
PY - 2008/3/15
Y1 - 2008/3/15
N2 - Muramyl dipeptide (MDP), the microbial activator of nucleotide-binding oligomerization domain 2 (Nod2), induces NF-κB and MAPK activation, leading to the production of multiple anti-bacterial and proinflammatory molecules. In addition, MDP has been implicated in IL-1β secretion through the regulation of caspase-1. However, the mechanisms that mediate caspase-1 activation and IL-1β secretion in response to MDP stimulation remain poorly understood. We show here that fluorescent MDP molecules are internalized in primary macrophages and accumulate in granular structures that colocalize with markers of acidified endosomal compartments. The uptake of MDP was Nod2-independent. Upon ATP stimulation, labeled MDP was rapidly released from acidified vesicles into the cytosol, a process that required functional pannexin-1. Caspase-1 activation induced by MDP and ATP required pannexin-1 and Cryopyrin but was independent of Nod2. Conversely, induction of pro-IL-1β mRNA by MDP stimulation was abolished in Nod2-deficient macrophages but unimpaired in macrophages lacking Cryopyrin. These studies demonstrate a Nod2-independent mechanism mediated through pore-forming pannexin-1 that is required for intracellular delivery of MDP to the cytosol and caspase-1 activation. Furthermore, the work provides evidence for distinct roles of Nod2 and Cryopyrin in the regulation of MDP-induced caspase-1 activation and IL-1β secretion.
AB - Muramyl dipeptide (MDP), the microbial activator of nucleotide-binding oligomerization domain 2 (Nod2), induces NF-κB and MAPK activation, leading to the production of multiple anti-bacterial and proinflammatory molecules. In addition, MDP has been implicated in IL-1β secretion through the regulation of caspase-1. However, the mechanisms that mediate caspase-1 activation and IL-1β secretion in response to MDP stimulation remain poorly understood. We show here that fluorescent MDP molecules are internalized in primary macrophages and accumulate in granular structures that colocalize with markers of acidified endosomal compartments. The uptake of MDP was Nod2-independent. Upon ATP stimulation, labeled MDP was rapidly released from acidified vesicles into the cytosol, a process that required functional pannexin-1. Caspase-1 activation induced by MDP and ATP required pannexin-1 and Cryopyrin but was independent of Nod2. Conversely, induction of pro-IL-1β mRNA by MDP stimulation was abolished in Nod2-deficient macrophages but unimpaired in macrophages lacking Cryopyrin. These studies demonstrate a Nod2-independent mechanism mediated through pore-forming pannexin-1 that is required for intracellular delivery of MDP to the cytosol and caspase-1 activation. Furthermore, the work provides evidence for distinct roles of Nod2 and Cryopyrin in the regulation of MDP-induced caspase-1 activation and IL-1β secretion.
UR - http://www.scopus.com/inward/record.url?scp=44849136632&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.180.6.4050
DO - 10.4049/jimmunol.180.6.4050
M3 - Article
C2 - 18322214
AN - SCOPUS:44849136632
SN - 0022-1767
VL - 180
SP - 4050
EP - 4057
JO - Journal of Immunology
JF - Journal of Immunology
IS - 6
ER -