Overview of the Assays to Probe O-Linked β-N-Acetylglucosamine Transferase Binding and Activity

Cyril Balsollier, Roland J Pieters, Marko Anderluh

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

O-GlcNAcylation is a posttranslational modification that occurs at serine and threonine residues of protein substrates by the addition of O-linked β-d-N-acetylglucosamine (GlcNAc) moiety. Two enzymes are involved in this modification: O-GlcNac transferase (OGT), which attaches the GlcNAc residue to the protein substrate, and O-GlcNAcase (OGA), which removes it. This biological balance is important for many biological processes, such as protein expression, cell apoptosis, and regulation of enzyme activity. The extent of this modification has sparked interest in the medical community to explore OGA and OGT as therapeutic targets, particularly in degenerative diseases. While some OGA inhibitors are already in phase 1 clinical trials for the treatment of Alzheimer's disease, OGT inhibitors still have a long way to go. Due to complex expression and instability, the discovery of potent OGT inhibitors is challenging. Over the years, the field has grappled with this problem, and scientists have developed a number of techniques and assays. In this review, we aim to highlight assays and techniques for OGT inhibitor discovery, evaluate their strength for the field, and give us direction for future bioassay methods.

Original languageEnglish
Article number1037
Number of pages20
JournalMolecules (Basel, Switzerland)
Volume26
Issue number4
DOIs
Publication statusPublished - 2 Feb 2021

Keywords

  • GlcNAcylation
  • O-GlcNAc Transferase
  • OGT
  • OGT inhibitor
  • bioassay

Fingerprint

Dive into the research topics of 'Overview of the Assays to Probe O-Linked β-N-Acetylglucosamine Transferase Binding and Activity'. Together they form a unique fingerprint.

Cite this