@article{724d303b2b304f118ed400da6b06d284,
title = "Orientation bandwidths are invariant across spatiotemporal frequency after isotropic components are removed",
abstract = "It is well established that mammalian visual cortex possesses a large proportion of orientation-selective neurons. Attempts to measure the bandwidth of these mechanisms psychophysically have yielded highly variable results (~6°-180°). Two stimulus factors have been proposed to account for this variability: spatial and temporal frequency; with several studies indicating broader bandwidths at low spatial and high temporal frequencies. We estimated orientation bandwidths using a classic overlay masking paradigm across a range of spatiotemporal frequencies (0.5, 2, and 8 c.p.d.; 1.6 and 12.5 Hz) with target and mask presented either monoptically or dichoptically. A standard three-parameter Gaussian model (amplitude and width, mean fixed at 0°) confirms that bandwidths generally increase at low spatial and high temporal frequencies. When incorporating an additional orientation-untuned (isotropic) amplitude component, however, we find that not only are the amplitudes of isotropic and orientation-tuned components highly dependent upon stimulus spatiotemporal frequency, but orientation bandwidths are highly invariant (~30° half width half amplitude). These results suggest that previously reported spatiotemporally contingent bandwidth effects may have confounded bandwidth with isotropic (so-called cross-orientation) masking. Interestingly, the magnitudes of all monoptically derived parameter estimates were found to transfer dichoptically suggesting a cortical locus for both isotropic and orientation-tuned masking.",
keywords = "Bandwidth, Cross-orientation masking, Orientation, Spatial frequency, Temporal frequency",
author = "John Cass and Sjoerd Stuit and Peter Bex and David Alais",
year = "2009",
doi = "10.1167/9.12.17",
language = "English",
volume = "9",
pages = "1--14",
journal = "Journal of Vision",
issn = "1534-7362",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "12",
}