TY - JOUR
T1 - Organometallic half-sandwich iridium anticancer complexes
AU - Liu, Z.
AU - Habtemariam, A.
AU - Pizarro, A.M.
AU - Fletcher, S.A.
AU - Kisova, A.
AU - Vrana, O.
AU - Salassa, L.
AU - Bruijnincx, P.C.A.
AU - Clarkson, G.J.
AU - Brabec, V.
AU - Sadler, Peter J.
PY - 2011
Y1 - 2011
N2 - The low-spin 5d6 IrIII organometallic half-sandwich complexes [(η5-Cpx)Ir(XY)Cl]0/+, Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph), or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph), XY = 1,10-phenanthroline (4−6), 2,2′-bipyridine (7−9), ethylenediamine (10 and 11), or picolinate (12−14), hydrolyze rapidly. Complexes with N,N-chelating ligands readily form adducts with 9-ethylguanine but not 9-ethyladenine; picolinate complexes bind to both purines. Cytotoxic potency toward A2780 human ovarian cancer cells increases with phenyl substitution on Cp*: Cpxbiph > Cpxph > Cp*; Cpxbiph complexes 6 and 9 have submicromolar activity. Guanine residues are preferential binding sites for 4−6 on plasmid DNA. Hydrophobicity (log P), cell and nucleus accumulation of Ir correlate with cytotoxicity, 6 > 5 > 4; they distribute similarly within cells. The ability to displace DNA intercalator ethidium bromide from DNA correlates with cytotoxicity and viscosity of Ir−DNA adducts. The hydrophobicity and intercalative ability of Cpxph and Cpxbiph make a major contribution to the anticancer potency of their IrIII complexes.
AB - The low-spin 5d6 IrIII organometallic half-sandwich complexes [(η5-Cpx)Ir(XY)Cl]0/+, Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph), or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph), XY = 1,10-phenanthroline (4−6), 2,2′-bipyridine (7−9), ethylenediamine (10 and 11), or picolinate (12−14), hydrolyze rapidly. Complexes with N,N-chelating ligands readily form adducts with 9-ethylguanine but not 9-ethyladenine; picolinate complexes bind to both purines. Cytotoxic potency toward A2780 human ovarian cancer cells increases with phenyl substitution on Cp*: Cpxbiph > Cpxph > Cp*; Cpxbiph complexes 6 and 9 have submicromolar activity. Guanine residues are preferential binding sites for 4−6 on plasmid DNA. Hydrophobicity (log P), cell and nucleus accumulation of Ir correlate with cytotoxicity, 6 > 5 > 4; they distribute similarly within cells. The ability to displace DNA intercalator ethidium bromide from DNA correlates with cytotoxicity and viscosity of Ir−DNA adducts. The hydrophobicity and intercalative ability of Cpxph and Cpxbiph make a major contribution to the anticancer potency of their IrIII complexes.
U2 - 10.1021/jm2000932
DO - 10.1021/jm2000932
M3 - Article
SN - 0022-2623
VL - 54
SP - 3011
EP - 3026
JO - Journal of Medicinal Chemistry
JF - Journal of Medicinal Chemistry
IS - 8
ER -