Abstract
Scope
Investigations into the immunological response of proteins is often masked by lipopolysaccharide (LPS) contamination. We report an optimized Triton X-114 (TX-114) based LPS extraction method for β-lactoglobulin (BLG) and soy protein extract suitable for cell-based immunological assays.
Methods and results
Optimization of an existing TX-114 based phase LPS extraction method resulted in >99% reduction of LPS levels. However, remaining TX-114 was found to interfere with LPS and protein concentration assays and decreased viability of THP-1 macrophages and HEK-Blue 293 cells. Upon screening a range of TX-114 extraction procedures, TX-114-binding beads were found to most effectively lower TX-114 levels without affecting protein structural properties. LPS-purified proteins showed reduced capacity to activate TLR4 compared to non-treated proteins. LPS-purified BLG did not induce secretion of pro-inflammatory cytokines from THP-1 macrophages, as non-treated protein did, showing that LPS contamination masks the immunomodulatory effect of BLG. Both HEK293 cells expressing TLR4 and differentiated THP-1 macrophages were shown as a relevant model to screen the protein preparations for biological effects of LPS contamination.
Conclusion
The reported TX-114 assisted LPS-removal from protein preparations followed by bead based removal of TX-114 allows evaluation of natively folded protein preparations for their immunological potential in cell-based studies.
Investigations into the immunological response of proteins is often masked by lipopolysaccharide (LPS) contamination. We report an optimized Triton X-114 (TX-114) based LPS extraction method for β-lactoglobulin (BLG) and soy protein extract suitable for cell-based immunological assays.
Methods and results
Optimization of an existing TX-114 based phase LPS extraction method resulted in >99% reduction of LPS levels. However, remaining TX-114 was found to interfere with LPS and protein concentration assays and decreased viability of THP-1 macrophages and HEK-Blue 293 cells. Upon screening a range of TX-114 extraction procedures, TX-114-binding beads were found to most effectively lower TX-114 levels without affecting protein structural properties. LPS-purified proteins showed reduced capacity to activate TLR4 compared to non-treated proteins. LPS-purified BLG did not induce secretion of pro-inflammatory cytokines from THP-1 macrophages, as non-treated protein did, showing that LPS contamination masks the immunomodulatory effect of BLG. Both HEK293 cells expressing TLR4 and differentiated THP-1 macrophages were shown as a relevant model to screen the protein preparations for biological effects of LPS contamination.
Conclusion
The reported TX-114 assisted LPS-removal from protein preparations followed by bead based removal of TX-114 allows evaluation of natively folded protein preparations for their immunological potential in cell-based studies.
Original language | English |
---|---|
Pages (from-to) | e0173778 |
Journal | PLoS One |
Volume | 12 |
Issue number | 3 |
DOIs | |
Publication status | Published - 29 Mar 2017 |