Abstract

Mastitis is a serious production-limiting disease, with effects on milk yield, milk quality, and conception rate, and an increase in the risk of mortality and culling. The objective of this study was 2-fold: (1) to develop an economic optimization model that incorporates all the different types of pathogens that cause clinical mastitis (CM) categorized into 8 classes of culture results, and account for whether the CM was a first, second, or third case in the current lactation and whether the cow had a previous case or cases of CM in the preceding lactation; and (2) to develop this decision model to be versatile enough to add additional pathogens, diseases, or other cow characteristics as more information becomes available without significant alterations to the basic structure of the model. The model provides economically optimal decisions depending on the individual characteristics of the cow and the specific pathogen causing CM. The net returns for the basic herd scenario (with all CM included) were $507/cow per year, where the incidence of CM (cases per 100 cow-years) was 35.6, of which 91.8% of cases were recommended for treatment under an optimal replacement policy. The cost per case of CM was $216.11. The CM cases comprised (incidences, %) Staphylococcus spp. (1.6), Staphylococcus aureus (1.8), Streptococcus spp. (6.9), Escherichia coli (8.1), Klebsiella spp. (2.2), other treated cases (e.g., Pseudomonas; 1.1), other not treated cases (e.g., Trueperella pyogenes; 1.2), and negative culture cases (12.7). The average cost per case, even under optimal decisions, was greatest for Klebsiella spp. ($477), followed by E. coli ($361), other treated cases ($297), and other not treated cases ($280). This was followed by the gram-positive pathogens; among these, the greatest cost per case was due to Staph. aureus ($266), followed by Streptococcus spp. ($174) and Staphylococcus spp. ($135); negative culture had the lowest cost ($115). The model recommended treatment for most CM cases (>85%); the range was 86.2% (Klebsiella spp.) to 98.5% (Staphylococcus spp.). In general, the optimal recommended time for replacement was up to 5 mo earlier for cows with CM compared with cows without CM. Furthermore, although the parameter estimates implemented in this model are applicable to the dairy farms in this study, the parameters may be altered to be specific to other dairy farms. Cow rankings and values based on disease status, pregnancy status, and milk production can be extracted; these provide guidance when determining which cows to keep or cull.

Original languageEnglish
Pages (from-to)2101-17
Number of pages17
JournalJournal of Dairy Science
Volume97
Issue number4
DOIs
Publication statusPublished - 2014

Keywords

  • Animals
  • Cattle
  • Computer Simulation/economics
  • Costs and Cost Analysis
  • Dairying/economics
  • Escherichia coli/isolation & purification
  • Female
  • Food Quality
  • Klebsiella/isolation & purification
  • Lactation
  • Mastitis, Bovine/economics
  • Milk
  • Models, Economic
  • Pregnancy
  • Sensitivity and Specificity
  • Software/economics
  • Staphylococcus aureus/isolation & purification
  • Streptococcus/isolation & purification

Fingerprint

Dive into the research topics of 'Optimal insemination and replacement decisions to minimize the cost of pathogen-specific clinical mastitis in dairy cows'. Together they form a unique fingerprint.

Cite this