One-Step Photoactivation of a Dual-Functionalized Bioink as Cell Carrier and Cartilage-Binding Glue for Chondral Regeneration

Khoon S Lim, Florencia Abinzano, Paulina Nuñez Bernal, Ane Albillos Sanchez, Pau Atienza-Roca, Iris A Otto, Quentin C Peiffer, Michiya Matsusaki, Tim B F Woodfield, Jos Malda, Riccardo Levato

    Research output: Contribution to journalArticleAcademicpeer-review

    Abstract

    Cartilage defects can result in pain, disability, and osteoarthritis. Hydrogels providing a chondroregeneration-permissive environment are often mechanically weak and display poor lateral integration into the surrounding cartilage. This study develops a visible-light responsive gelatin ink with enhanced interactions with the native tissue, and potential for intraoperative bioprinting. A dual-functionalized tyramine and methacryloyl gelatin (GelMA-Tyr) is synthesized. Photo-crosslinking of both groups is triggered in a single photoexposure by cell-compatible visible light in presence of tris(2,2'-bipyridyl)dichlororuthenium(II) and sodium persulfate as initiators. Neo-cartilage formation from embedded chondroprogenitor cells is demonstrated in vitro, and the hydrogel is successfully applied as bioink for extrusion-printing. Visible light in situ crosslinking in cartilage defects results in no damage to the surrounding tissue, in contrast to the native chondrocyte death caused by UV light (365-400 nm range), commonly used in biofabrication. Tyramine-binding to proteins in native cartilage leads to a 15-fold increment in the adhesive strength of the bioglue compared to pristine GelMA. Enhanced adhesion is observed also when the ink is extruded as printable filaments into the defect. Visible-light reactive GelMA-Tyr bioinks can act as orthobiologic carriers for in situ cartilage repair, providing a permissive environment for chondrogenesis, and establishing safe lateral integration into chondral defects.

    Original languageEnglish
    Article number1901792
    Number of pages13
    JournalAdvanced healthcare materials
    Volume9
    Issue number15
    Early online date23 Apr 2020
    DOIs
    Publication statusPublished - 5 Aug 2020

    Keywords

    • biofabrication
    • bioglue
    • bioprinting
    • cartilage tissue engineering
    • tissue integration

    Fingerprint

    Dive into the research topics of 'One-Step Photoactivation of a Dual-Functionalized Bioink as Cell Carrier and Cartilage-Binding Glue for Chondral Regeneration'. Together they form a unique fingerprint.

    Cite this