Abstract
Let Ω(n) denote the number of prime divisors of n counting multiplicity.
One can show that for any positive integer m and all j =0, 1, . . . , m−1,
we have #{n ≤ x : Ω(n) ≡ j(modm)} = x/m + o(xα), with α = 1. Building on work of Kubota and Yoshida, we show that for m>2 and any j =0, 1, . . . , m − 1, the error term is not o(xα) for any α
Original language | English |
---|---|
Pages (from-to) | 15-22 |
Number of pages | 8 |
Journal | Nagoya Mathematical Journal |
Volume | 202 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- Wiskunde en Informatica (WIIN)
- Mathematics
- Landbouwwetenschappen
- Natuurwetenschappen
- Wiskunde: algemeen