On the residue class distribution of the number of prime divisors of an integer

M. Coons, S.R. Dahmen

    Research output: Contribution to journalArticleAcademicpeer-review

    Abstract

    Let Ω(n) denote the number of prime divisors of n counting multiplicity. One can show that for any positive integer m and all j =0, 1, . . . , m−1, we have #{n ≤ x : Ω(n) ≡ j(modm)} = x/m + o(xα), with α = 1. Building on work of Kubota and Yoshida, we show that for m>2 and any j =0, 1, . . . , m − 1, the error term is not o(xα) for any α
    Original languageEnglish
    Pages (from-to)15-22
    Number of pages8
    JournalNagoya Mathematical Journal
    Volume202
    DOIs
    Publication statusPublished - 2011

    Keywords

    • Wiskunde en Informatica (WIIN)
    • Mathematics
    • Landbouwwetenschappen
    • Natuurwetenschappen
    • Wiskunde: algemeen

    Fingerprint

    Dive into the research topics of 'On the residue class distribution of the number of prime divisors of an integer'. Together they form a unique fingerprint.

    Cite this