TY - JOUR
T1 - On Parameter Bias in Earthquake Sequence Models using Data Assimilation
AU - Banerjee, Arunduthi
AU - van Dinther, Ylona
AU - Vossepoel, Femke
N1 - Funding Information:
The contributions of Femke C. Vossepoel and Arundhuti Banerjee have been funded by the Delft Technology Fellowship of Delft University of Technology. This work contributes to the DeepNL InFocus project, funded by NWO (DEEP.NL.2018.037). The work benefited from discussions with André Niemeijer of Utrecht University and Hamed Diab-Montero of Delft University of Technology.
Funding Information:
This research has been supported by the NWO (grant no. DEEP.NL.2018.037).
Publisher Copyright:
© 2023 Arundhuti Banerjee et al.
PY - 2023/4/5
Y1 - 2023/4/5
N2 - The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge-Knopoff spring-block model with rate-and-state friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the bias. A small parameter bias in ϵ (+3%) can be compensated for very well using state estimation (R2Combining double low line0.99), whereas an intermediate bias (-14%) can only be partly compensated for using state estimation (R2=0.47). When increasing particle spread by accounting for model error and an additional resampling step, R2 increases to 0.61. However, when there is a large bias (-43%) in ϵ, only state-parameter estimation can fully account for the parameter bias (R2=0.97). Thus, simultaneous state and parameter estimation effectively separates the error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with uncertain parameters.
AB - The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge-Knopoff spring-block model with rate-and-state friction. Minor changes in the friction parameter ϵ can lead to different state trajectories and earthquake characteristics. The performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in ϵ depends on the magnitude of the bias. A small parameter bias in ϵ (+3%) can be compensated for very well using state estimation (R2Combining double low line0.99), whereas an intermediate bias (-14%) can only be partly compensated for using state estimation (R2=0.47). When increasing particle spread by accounting for model error and an additional resampling step, R2 increases to 0.61. However, when there is a large bias (-43%) in ϵ, only state-parameter estimation can fully account for the parameter bias (R2=0.97). Thus, simultaneous state and parameter estimation effectively separates the error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with uncertain parameters.
UR - http://www.scopus.com/inward/record.url?scp=85152797114&partnerID=8YFLogxK
U2 - 10.5194/npg-30-101-2023
DO - 10.5194/npg-30-101-2023
M3 - Article
SN - 1023-5809
VL - 30
SP - 101
EP - 115
JO - Nonlinear Processes in Geophysics
JF - Nonlinear Processes in Geophysics
IS - 2
ER -