On 1-Bend Upward Point-Set Embeddings of st-Digraphs

Emilio Di Giacomo*, Henry Förster, Daria Kokhovich, Tamara Mchedlidze, Fabrizio Montecchiani, Antonios Symvonis, Anaïs Villedieu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

We study the upward point-set embeddability of digraphs on one-sided convex point sets with at most 1 bend per edge. We provide an algorithm to compute a 1-bend upward point-set embedding of outerplanar st-digraphs on arbitrary one-sided convex point sets. We complement this result by proving that for every n≥18 there exists a 2-outerplanar st-digraph G with n vertices and a one-sided convex point set S so that G does not admit a 1-bend upward point-set embedding on S.

Original languageEnglish
Title of host publicationLATIN 2024
Subtitle of host publicationTheoretical Informatics - 16th Latin American Symposium, 2024, Proceedings
EditorsJosé A. Soto, Andreas Wiese
PublisherSpringer
Pages3-18
ISBN (Print)9783031555978
DOIs
Publication statusPublished - 2024
Event16th Latin American Symposium on Theoretical Informatics, LATIN 2042 - Puerto Varas, Chile
Duration: 18 Mar 202422 Mar 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14578 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th Latin American Symposium on Theoretical Informatics, LATIN 2042
Country/TerritoryChile
CityPuerto Varas
Period18/03/2422/03/24

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Fingerprint

Dive into the research topics of 'On 1-Bend Upward Point-Set Embeddings of st-Digraphs'. Together they form a unique fingerprint.

Cite this