Abstract
High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang1; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ( ), also known as the anti-α ( ), consists of two antiprotons and two antineutrons (baryon number B = −4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level2. Antimatter nuclei with B
Original language | English |
---|---|
Pages (from-to) | 353-356 |
Number of pages | 5 |
Journal | Nature |
Volume | 473 |
Issue number | 7347 |
DOIs | |
Publication status | Published - 2011 |