North Atlantic surface ocean warming and salinization in response to middle Eocene greenhouse warming

Robin van der Ploeg*, Margot J. Cramwinckel, Ilja J. Kocken, Thomas J. Leutert, Steven M. Bohaty, Chris D. Fokkema, Pincelli M. Hull, A. Nele Meckler, Jack J. Middelburg, Inigo A. Müller, Donald E. Penman, Francien Peterse, Gert Jan Reichart, Philip F. Sexton, Maximilian Vahlenkamp, David De Vleeschouwer, Paul A. Wilson, Martin Ziegler, Appy Sluijs

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δ18Osw) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ47) and oxygen isotope (δ18Oc) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)–based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5 ‰ shift toward higher δ18Osw, which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming.

Original languageEnglish
Article numbereabq0110
Pages (from-to)1-16
Number of pages16
JournalScience advances
Volume9
Issue number4
DOIs
Publication statusPublished - Jan 2023

Keywords

  • Climatic optimum meco
  • Planktic foraminifera
  • Thermal maximum
  • Proxy data
  • Temperature-gradient
  • Isotope analysis
  • Membrane-lipids
  • Atmospheric co2
  • Carbon-cycle
  • Global ocean

Fingerprint

Dive into the research topics of 'North Atlantic surface ocean warming and salinization in response to middle Eocene greenhouse warming'. Together they form a unique fingerprint.

Cite this