Abstract
Background
The use of antimicrobials in food animals and the emergence of antimicrobial resistance are global concerns. Ceftiofur is the only third-generation cephalosporin labeled for veterinary use in the USA, and it is the drug of choice in the majority of dairy farms for the treatment of mastitis. Here, we use next-generation sequencing to describe longitudinal changes that occur in the milk microbiome before, during, and after infection and treatment with ceftiofur. Twelve animals were intramammary challenged with Escherichia coli in one quarter and randomly allocated to receive intramammary treatment with ceftiofur (5d) or untreated controls. Serial samples were collected from −72 to 216 h relative to challenge from the challenged quarter, an ipsilateral quarter assigned to the same treatment group, and from a third quarter that did not undergo intervention.
Results
Infection with E. coli dramatically impacted microbial diversity. Ceftiofur significantly decreased LogCFUs but had no significant effect on the milk microbiome, rate of pathogen clearance, or somatic cell count. At the end of the study, the microbial profile of infected quarters was indistinguishable from pre-challenge samples in both treated and untreated animals. Intramammary infusion with ceftiofur did not alter the healthy milk (i.e., milk devoid of clots or serous appearance and collected from a mammary gland that shows no clinical signs of mastitis) microbiome.
Conclusions
Our results indicate that the mammary gland harbors a resilient microbiome, capable of reestablishing itself after experimental infection with E. coli independent of antimicrobial treatment.
The use of antimicrobials in food animals and the emergence of antimicrobial resistance are global concerns. Ceftiofur is the only third-generation cephalosporin labeled for veterinary use in the USA, and it is the drug of choice in the majority of dairy farms for the treatment of mastitis. Here, we use next-generation sequencing to describe longitudinal changes that occur in the milk microbiome before, during, and after infection and treatment with ceftiofur. Twelve animals were intramammary challenged with Escherichia coli in one quarter and randomly allocated to receive intramammary treatment with ceftiofur (5d) or untreated controls. Serial samples were collected from −72 to 216 h relative to challenge from the challenged quarter, an ipsilateral quarter assigned to the same treatment group, and from a third quarter that did not undergo intervention.
Results
Infection with E. coli dramatically impacted microbial diversity. Ceftiofur significantly decreased LogCFUs but had no significant effect on the milk microbiome, rate of pathogen clearance, or somatic cell count. At the end of the study, the microbial profile of infected quarters was indistinguishable from pre-challenge samples in both treated and untreated animals. Intramammary infusion with ceftiofur did not alter the healthy milk (i.e., milk devoid of clots or serous appearance and collected from a mammary gland that shows no clinical signs of mastitis) microbiome.
Conclusions
Our results indicate that the mammary gland harbors a resilient microbiome, capable of reestablishing itself after experimental infection with E. coli independent of antimicrobial treatment.
Original language | English |
---|---|
Journal | Microbiome |
Volume | 5 |
DOIs | |
Publication status | Published - 12 Jul 2017 |
Keywords
- Milk microbiome
- Mastitis
- E. coli
- Ceftiofur
- Dairy cattle
- Antimicrobial treatment
- Milk
- Third-generation cephalosporin
- Cephalosporins