TY - GEN
T1 - Non-parallel semi-supervised classification based on kernel spectral clustering
AU - Mehrkanoon, Siamak
AU - Suykens, Johan A.K.
PY - 2013
Y1 - 2013
N2 - In this paper, a non-parallel semi-supervised algorithm based on kernel spectral clustering is formulated. The prior knowledge about the labels is incorporated into the kernel spectral clustering formulation via adding regularization terms. In contrast with the existing multi-plane classifiers such as Multisurface Proximal Support Vector Machine (GEPSVM) and Twin Support Vector Machines (TWSVM) and its least squares version (LSTSVM) we will not use a kernel-generated surface. Instead we apply the kernel trick in the dual. Therefore as opposed to conventional non-parallel classifiers one does not need to formulate two different primal problems for the linear and nonlinear case separately. The proposed method will generate two non-parallel hyperplanes which then are used for out-of-sample extension. Experimental results demonstrate the efficiency of the proposed method over existing methods.
AB - In this paper, a non-parallel semi-supervised algorithm based on kernel spectral clustering is formulated. The prior knowledge about the labels is incorporated into the kernel spectral clustering formulation via adding regularization terms. In contrast with the existing multi-plane classifiers such as Multisurface Proximal Support Vector Machine (GEPSVM) and Twin Support Vector Machines (TWSVM) and its least squares version (LSTSVM) we will not use a kernel-generated surface. Instead we apply the kernel trick in the dual. Therefore as opposed to conventional non-parallel classifiers one does not need to formulate two different primal problems for the linear and nonlinear case separately. The proposed method will generate two non-parallel hyperplanes which then are used for out-of-sample extension. Experimental results demonstrate the efficiency of the proposed method over existing methods.
UR - http://www.scopus.com/inward/record.url?scp=84893617119&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2013.6707029
DO - 10.1109/IJCNN.2013.6707029
M3 - Conference contribution
AN - SCOPUS:84893617119
SN - 9781467361293
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2013 International Joint Conference on Neural Networks, IJCNN 2013
T2 - 2013 International Joint Conference on Neural Networks, IJCNN 2013
Y2 - 4 August 2013 through 9 August 2013
ER -