Multiple system estimation for the size of the Māori population in New Zealand

M.J.L.F. Cruyff, P.G.M. van der Heijden, P.A. Smith, C. Bycroft, P. Graham

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

We investigate the situation where two or more registers, or lists, of individuals are linked both for the purpose of population size estimation and to investigate the relationship between variables appearing on all or only some of the registers. There is usually no full picture of this relationship because there are individuals that are in only some of the lists, and also individuals that are in none of the lists. These two problems have been solved simultaneously in dual system estimation using the EM algorithm. We extend this approach to four registers (including the population census) to estimate the size of the indigenous Māori population in New Zealand, where the reporting of Māori is not the same in each
register and where there is a further missing data problem, with individuals included in one or more registers who did not provide their ethnicity. We consider the implications for estimating the size of the Māori population from administrative data only.
Original languageEnglish
Title of host publicationProceedings of the 62nd ISI World Statistics Congress 2019
Subtitle of host publicationSpecial Topic Session
Pages315-323
Volume3
Publication statusPublished - 2019
EventISI (International Statistical Institute) World Statistics Congres: Scientific Programme - Kuala Lumpur, Malaysia
Duration: 18 Aug 201923 Aug 2019
https://www.isi2019.org/scientific-programme-2/

Conference

ConferenceISI (International Statistical Institute) World Statistics Congres
Country/TerritoryMalaysia
CityKuala Lumpur
Period18/08/1923/08/19
Internet address

Keywords

  • dual system estimation
  • linkage
  • missing data
  • register
  • coverage

Fingerprint

Dive into the research topics of 'Multiple system estimation for the size of the Māori population in New Zealand'. Together they form a unique fingerprint.

Cite this