Abstract
The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions.
Original language | English |
---|---|
Article number | 092302 |
Pages (from-to) | 1-13 |
Journal | Physical Review Letters |
Volume | 127 |
Issue number | 9 |
DOIs | |
Publication status | Published - 27 Aug 2021 |
Access to Document
Fingerprint
Dive into the research topics of 'Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at √sNN = 2.76 TeV'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review Letters, Vol. 127, No. 9, 092302, 27.08.2021, p. 1-13.
Research output: Contribution to journal › Article › Academic › peer-review
TY - JOUR
T1 - Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at √sNN = 2.76 TeV
AU - ALICE Collaboration
AU - Acharya, S.
AU - Adamová, D.
AU - Adler, A.
AU - Adolfsson, J.
AU - Aglieri Rinella, G.
AU - Agnello, M.
AU - Agrawal, N.
AU - Ahammed, Z.
AU - Ahmad, S.
AU - Ahn, S. U.
AU - Akbar, Z.
AU - Akindinov, A.
AU - Al-Turany, M.
AU - Albuquerque, D. S.D.
AU - Aleksandrov, D.
AU - Alessandro, B.
AU - Alfanda, H. M.
AU - Alfaro Molina, R.
AU - Ali, B.
AU - Ali, Y.
AU - Alici, A.
AU - Alizadehvandchali, N.
AU - Alkin, A.
AU - Alme, J.
AU - Alt, T.
AU - Altenkamper, L.
AU - Altsybeev, I.
AU - Anaam, M. N.
AU - Andrei, C.
AU - Andreou, D.
AU - Andronic, A.
AU - Anguelov, V.
AU - Antičić, T.
AU - Antinori, F.
AU - Christakoglou, P.
AU - Grelli, A.
AU - Hohlweger, B.
AU - Jaelani, S.
AU - Kuijer, P. G.
AU - Mohanty, A. P.
AU - Peitzmann, T.
AU - Qiu, S.
AU - Sas, M. H.P.
AU - Snellings, R. J.M.
AU - Van Der Kolk, N.
AU - Van Doremalen, L. V.R.
AU - Van Leeuwen, M.
AU - Vermunt, L.
AU - Verweij, M.
AU - Yokoyama, H.
AU - Correia Zanoli, Henrique
N1 - Funding Information: The ALICE Collaboration would like to thank Harri Niemi for providing the latest predictions from the state-of-the-art hydrodynamic model. The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science and Technology of China (MSTC), and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN, and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC), and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT), and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education, National Science Centre, and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation, and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation, and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research, and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA), and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. Publisher Copyright: © 2021 CERN, for the ALICE Collaboration.
PY - 2021/8/27
Y1 - 2021/8/27
N2 - The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions.
AB - The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions.
UR - http://www.scopus.com/inward/record.url?scp=85114159716&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.127.092302
DO - 10.1103/PhysRevLett.127.092302
M3 - Article
C2 - 34506195
AN - SCOPUS:85114159716
SN - 0031-9007
VL - 127
SP - 1
EP - 13
JO - Physical Review Letters
JF - Physical Review Letters
IS - 9
M1 - 092302
ER -