Morphoecological characteristics of grasses used to restore degraded semi-arid African rangelands

Kevin Z. Mganga*, Eric Kaindi, Aphaxard J.N. Ndathi, Luwieke Bosma, Theophilus Kioko, Nancy Kadenyi, Stephen M. Wambua, Frank van Steenbergen, Nashon K.R. Musimba

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Progressive loss of productivity and plant diversity is a concern in global rangelands. In African rangelands, this process is partly attributed to heavy and uncontrolled grazing by livestock and wildlife, leading to land degradation. Therefore, restoring such degraded rangelands is critical for enhancing ecosystem health and securing the livelihoods of millions of people. Active restoration strategies, for example, reseeding using indigenous perennial grasses, have been identified as a viable ecological solution for restoring degraded African rangelands. Grass species indigenous to African rangelands Cenchrus ciliaris L. (African foxtail grass), Eragrostis superba Peyr. (Maasai love grass), Enteropogon macrostachyus (Hochst. Ex A. Rich.) Monro ex Benth. (Bush rye grass), Chloris roxburghiana Schult. (Horsetail grass) and Chloris gayana Kunth. cv Boma (Rhodes grass) were established in a semi-arid rangeland in Africa under natural conditions to compare their morphoecological characteristics and suitability for use in ecological restoration. Biomass dry matter yields, plant densities, basal cover, seed production, tiller densities and plant height were measured. Chloris gayana cv Boma and E. superba produced significantly higher dry matter biomass yields and attained higher seed production than other species. High biomass and seed production indicate their suitability to support livestock production and replenish depleted soil seed banks, respectively. Enteropogon macrostachyus and C. ciliaris displayed significantly higher values for components of establishment and ecological restoration success, that is, plant densities, tiller densities and basal cover. Overall, C. roxburghiana ranked lowest in the measured morphoecological characteristics. Successful restoration of degraded African semi-arid rangelands using indigenous grass reseeding can best be achieved through careful selection of grasses to take advantage of their specific morphoecological characteristics. This selection should primarily be informed by the intended use of the rangeland and the specific challenges of restoring each site.

Original languageEnglish
Article numbere12078
Pages (from-to)1-8
JournalEcological Solutions and Evidence
Volume2
Issue number2
DOIs
Publication statusPublished - Apr 2021
Externally publishedYes

Keywords

  • aboveground biomass
  • basal cover
  • plant density
  • plant structure
  • reseeding
  • seed production
  • tillers

Fingerprint

Dive into the research topics of 'Morphoecological characteristics of grasses used to restore degraded semi-arid African rangelands'. Together they form a unique fingerprint.

Cite this