Monitoring the metabolic state of fungal hyphae and the presence of melanin by nonlinear spectral imaging

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Label-free nonlinear spectral imaging microscopy (NLSM) records two-photon-excited fluorescence emission spectra of endogenous fluorophores within the specimen. Here, NLSM is introduced as a novel, minimally invasive method to analyze the metabolic state of fungal hyphae by monitoring the autofluorescence of NAD(P)H and flavin adenine dinucleotide (FAD). Moreover, the presence of melanin was analyzed by NLSM. NAD(P)H, FAD, and melanin were used as biomarkers for freshness of mushrooms of Agaricus bisporus (white button mushroom) that had been stored at 4°C for 0 to 17 days. During this period, the mushrooms did not show changes in morphology or color detectable by eye. In contrast, FAD/NAD(P)H and melanin/NAD(P)H ratios increased over time. For instance, these ratios increased from 0.92 to 2.02 and from 0.76 to 1.53, respectively, at the surface of mushroom caps that had been harvested by cutting the stem. These ratios were lower under the skin than at the surface of fresh mushrooms (0.78 versus 0.92 and 0.41 versus 0.76, respectively), indicative of higher metabolism and lower pigment formation within the fruiting body. Signals were different not only between tissues of the mushroom but also between neighboring hyphae. These data show that NLSM can be used to determine the freshness of mushrooms and to monitor the postharvest browning process at an early stage. Moreover, these data demonstrate the potential of NLSM to address a broad range of fundamental and applied microbiological processes.
Original languageEnglish
Pages (from-to)6345-6350
Number of pages6
JournalApplied and Environmental Microbiology
Volume79
Issue number20
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Monitoring the metabolic state of fungal hyphae and the presence of melanin by nonlinear spectral imaging'. Together they form a unique fingerprint.

Cite this