TY - JOUR
T1 - Monitoring of Maskun landslide and determining its quantitative relationship to different climatic conditions using D-InSAR and PSI techniques
AU - Pourkhosravani, Mohsen
AU - Mehrabi, Ali
AU - Pirasteh, Said
AU - Derakhshani, Reza
N1 - Publisher Copyright:
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2022
Y1 - 2022
N2 - Climate change has resulted in severe landslides in Maskun, Iran. This study evaluates and monitors the displacement caused by the landslide mass in Bam using Interferometry Synthetic Aperture Radar (DInSAR) and Persistent Scatterer Interferometry (PSI) techniques, as well as identifies relationships between climatic conditions and mass displacement. Temperature and precipitation data from 2007 to 2019 were combined with satellite images and the DInSAR method was used to determine the mass displacement differences after selecting eighteen radar images from the ASAR sensor of the ENVISAT satellite. Additionally, Sentinel 1 satellite images were acquired and analyzed using the PSI method from November 5, 2014, to June 24, 2019. The highest displacement level at the surface of the Maskun landslide mass was then extracted. The ASAR images show a monthly displacement rate of 7.3 mm. The smallest displacement, on the other hand, occurred between May and September 2009, at a rate of 3.1 mm/month. PSI results also revealed that the maximum Line Of Sight (LOS) velocities detected by PSI are −64.5 mm/yr (away from the satellite) and 32.45 mm/yr (toward the satellite). Rainfall is one of the main triggers for increasing the deformation of the Maskun landslide according to the time-series analysis.
AB - Climate change has resulted in severe landslides in Maskun, Iran. This study evaluates and monitors the displacement caused by the landslide mass in Bam using Interferometry Synthetic Aperture Radar (DInSAR) and Persistent Scatterer Interferometry (PSI) techniques, as well as identifies relationships between climatic conditions and mass displacement. Temperature and precipitation data from 2007 to 2019 were combined with satellite images and the DInSAR method was used to determine the mass displacement differences after selecting eighteen radar images from the ASAR sensor of the ENVISAT satellite. Additionally, Sentinel 1 satellite images were acquired and analyzed using the PSI method from November 5, 2014, to June 24, 2019. The highest displacement level at the surface of the Maskun landslide mass was then extracted. The ASAR images show a monthly displacement rate of 7.3 mm. The smallest displacement, on the other hand, occurred between May and September 2009, at a rate of 3.1 mm/month. PSI results also revealed that the maximum Line Of Sight (LOS) velocities detected by PSI are −64.5 mm/yr (away from the satellite) and 32.45 mm/yr (toward the satellite). Rainfall is one of the main triggers for increasing the deformation of the Maskun landslide according to the time-series analysis.
KW - Radar images
KW - DInSAR method
KW - PSI method
KW - Displacement
KW - Maskun Landslide
UR - http://www.scopus.com/inward/record.url?scp=85128664516&partnerID=8YFLogxK
U2 - 10.1080/19475705.2022.2065939
DO - 10.1080/19475705.2022.2065939
M3 - Article
SN - 1947-5705
VL - 13
SP - 1134
EP - 1153
JO - Geomatics, Natural Hazards and Risk
JF - Geomatics, Natural Hazards and Risk
IS - 1
ER -