TY - CHAP
T1 - Molecular Dynamics
AU - Mouhib, Halima
AU - Gils, Juami H. M. van
AU - Gavaldá-Garciá, Jose
AU - Hou, Qingzhen
AU - May, Ali
AU - Rauh, Arriën Symon
AU - Vreede, Jocelyne
AU - Abeln, Sanne
AU - Feenstra, K. Anton
N1 - editorial responsability: Halima Mouhib, Sanne Abeln, K. Anton Feenstra. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapters
PY - 2023/7/5
Y1 - 2023/7/5
N2 - While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. We know that many proteins have functional motions, and in Chapter "Structure Determination" we already introduced the famous example of the allosteric cooperative binding of oxygen to the haem group in hemoglobin. However, experimentally, such motions are hard to observe. Here, we will introduce MD simulations to investigate the dynamic behaviour of proteins. In a simulation the forces and interactions between particles are used to numerically derive the resulting three-dimensional movement of these particles over a certain time-scale. We will also highlight some applications, and will see how simulation results may be interpreted.
AB - While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. We know that many proteins have functional motions, and in Chapter "Structure Determination" we already introduced the famous example of the allosteric cooperative binding of oxygen to the haem group in hemoglobin. However, experimentally, such motions are hard to observe. Here, we will introduce MD simulations to investigate the dynamic behaviour of proteins. In a simulation the forces and interactions between particles are used to numerically derive the resulting three-dimensional movement of these particles over a certain time-scale. We will also highlight some applications, and will see how simulation results may be interpreted.
KW - q-bio.BM
U2 - 10.48550/arXiv.2307.02176
DO - 10.48550/arXiv.2307.02176
M3 - Chapter
BT - Introduction to Structural Bioinformatics
ER -