Abstract
We study certain formal group laws equipped with an action of the cyclic group of order a power of 2. We construct C2n-equivariant Real oriented models of Lubin-Tate spectra Eh at heights h=2n−1m and give explicit formulas of the C2n-action on their coefficient rings. Our construction utilizes equivariant formal group laws associated with the norms of the Real bordism theory MUR, and our work examines the height of the formal group laws of the Hill-Hopkins-Ravenel norms of MUR.
Original language | English |
---|---|
Number of pages | 45 |
Journal | arXiv |
Publication status | Published - 22 Jan 2020 |
Keywords
- Chromatic homotopy
- Equivariant homotopy
- Formal groups