Modelling lateral entrapment of suspended sediment in estuaries: The role of spatial lags in settling and M4 tidal flow

Zhongyong Yang*, Huib E. de Swart, Heqin Cheng, Chenjuan Jiang, Arnoldo Valle-Levinson

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The effect of the joint action of M2 and M4 tidal flow, residual flow and spatial settling lag on the lateral entrapment of sediment is examined in tidally dominated estuaries with an idealized model that assumes along-estuary uniform conditions. Approximate solutions are obtained for arbitrary cross-channel bed profiles by scaling and perturbation analysis. The hydrodynamics include externally driven M2 tidal flow, externally and internally driven M4 tidal flow and residual flow driven by horizontal density gradient, river discharge and nonlinear advection. The sediment concentration includes a mean component, an M2 component driven by bed erosion and an M2 component driven by both bed erosion and inertial terms. Sediment availability is calculated by imposing a morphodynamic equilibrium condition. The model is applied to a transect in the James River estuary where data of flow and suspended sediment concentration are available. Two types of sediment are separately considered, viz., fine silt and coarse silt. Residual advective transport of sediment by the lateral flow induces trapping of sediment over the left shoal (looking landward). Model results also show that the incorporation of M4 tidal flow and spatial settling lag leads to a second sediment trapping region over the right shoal. Model results are qualitatively in good agreement with the observations.

Original languageEnglish
Pages (from-to)126-142
Number of pages17
JournalContinental Shelf Research
Volume85
DOIs
Publication statusPublished - 15 Aug 2014

Keywords

  • Idealized model
  • James River estuary
  • Sediment entrapment
  • Spatial settling lag

Fingerprint

Dive into the research topics of 'Modelling lateral entrapment of suspended sediment in estuaries: The role of spatial lags in settling and M4 tidal flow'. Together they form a unique fingerprint.

Cite this