TY - JOUR
T1 - Modelling and mapping eye-level greenness visibility exposure using multi-source data at high spatial resolutions
AU - Labib, S M
AU - Huck, Jonathan
AU - lindley, sarah
PY - 2021/2/10
Y1 - 2021/2/10
N2 - The visibility of natural greenness is associated with several health benefits along multiple pathways, including stress recovery and attention restoration mechanisms. However, existing methodologies are inadequate for capturing eye-level greenness visibility exposure at high spatial resolutions for observers located on the ground. As a response, we developed an innovative methodological approach to model and map eye-level greenness visibility exposure for 5 m interval locations within a large study area. We used multi-source spatial data and applied viewshed analysis in conjunction with a distance decay model to compute a novel Viewshed Greenness Visibility Index (VGVI) at more than 86 million observer locations. We compared our eye-level visibility exposure map with traditional top-down greenness exposure metrics such as Normalised Differential Vegetation Index (NDVI) and a Street view based Green View Index (SGVI). Furthermore, we compared greenness visibility at street-only locations with total neighbourhood greenness visibility. We found strong to moderate correlations (r = 0.65-0.42, p < 0.05) between greenness visibility and mean NDVI, with a decreasing trend in correlation strength at increasing buffer distances from observer locations. Our findings suggest that top-down and eye-level measurements of greenness are two distinct metrics for assessing greenness exposure. Additionally, VGVI showed a strong correlation (r = 0.481, p < 0.01) with SGVI. Although the new VGVI has good agreement with existing street view based measures, we found that street-only greenness visibility values are not wholly representative of total neighbourhood visibility due to the under-representation of visible greenness in locations such as backyards and community parks. Our new methodology overcomes such underestimations, is easily transferable, and offers a computationally efficient approach to assessing eye-level greenness exposure.
AB - The visibility of natural greenness is associated with several health benefits along multiple pathways, including stress recovery and attention restoration mechanisms. However, existing methodologies are inadequate for capturing eye-level greenness visibility exposure at high spatial resolutions for observers located on the ground. As a response, we developed an innovative methodological approach to model and map eye-level greenness visibility exposure for 5 m interval locations within a large study area. We used multi-source spatial data and applied viewshed analysis in conjunction with a distance decay model to compute a novel Viewshed Greenness Visibility Index (VGVI) at more than 86 million observer locations. We compared our eye-level visibility exposure map with traditional top-down greenness exposure metrics such as Normalised Differential Vegetation Index (NDVI) and a Street view based Green View Index (SGVI). Furthermore, we compared greenness visibility at street-only locations with total neighbourhood greenness visibility. We found strong to moderate correlations (r = 0.65-0.42, p < 0.05) between greenness visibility and mean NDVI, with a decreasing trend in correlation strength at increasing buffer distances from observer locations. Our findings suggest that top-down and eye-level measurements of greenness are two distinct metrics for assessing greenness exposure. Additionally, VGVI showed a strong correlation (r = 0.481, p < 0.01) with SGVI. Although the new VGVI has good agreement with existing street view based measures, we found that street-only greenness visibility values are not wholly representative of total neighbourhood visibility due to the under-representation of visible greenness in locations such as backyards and community parks. Our new methodology overcomes such underestimations, is easily transferable, and offers a computationally efficient approach to assessing eye-level greenness exposure.
UR - https://uom-staging.elsevierpure.com/en/publications/modelling-and-mapping-eyelevel-greenness-visibility-exposure-using-multisource-data-at-high-spatial-resolutions(25dcec12-e192-486a-a44d-924cc50b6de1).html
U2 - 10.1016/j.scitotenv.2020.143050
DO - 10.1016/j.scitotenv.2020.143050
M3 - Article
C2 - 33129523
SN - 0048-9697
VL - 755
JO - Science of the Total Environment
JF - Science of the Total Environment
IS - Part I
M1 - 143050
ER -