Microphysical Modeling of Carbonate Fault Friction at Slip Rates Spanning the Full Seismic Cycle

Jianye Chen*, A. R. Niemeijer, Christopher J. Spiers

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Laboratory studies suggest that seismogenic rupture on faults in carbonate terrains can be explained by a transition from high friction, at low sliding velocities (V), to low friction due to rapid dynamic weakening as seismic slip velocities are approached. However, consensus on the controlling physical processes is lacking. We previously proposed a microphysically based model (the “Chen–Niemeijer–Spiers” [CNS] model) that accounts for the (rate-and-state) frictional behavior of carbonate fault gouges seen at low velocities characteristic of rupture nucleation. In the present study, we extend the CNS model to high velocities (1 mm/s ≤ V ≤ 10 m/s) by introducing multiple grain-scale deformation mechanisms activated by frictional heating. As velocity and hence temperature increase, the model predicts a continuous transition in dominant deformation mechanisms, from frictional granular flow with partial accommodation by plasticity at low velocities and temperatures, to grain boundary sliding with increasing accommodation by solid-state diffusion at high velocities and temperatures. Assuming that slip occurs in a localized shear band, within which grain size decreases with increasing velocity, the model results capture the main mechanical trends seen in high-velocity friction experiments on room-dry calcite-rich rocks, including steady-state and transient aspects, with reasonable quantitative agreement and without the need to invoke thermal decomposition or fluid pressurization effects. The extended CNS model covers the full spectrum of slip velocities from earthquake nucleation to seismic slip rates. Since it is based on realistic fault structure, measurable microstructural state variables, and established deformation mechanisms, it may offer an improved basis for extrapolating lab-derived friction data to natural fault conditions.

Original languageEnglish
Article numbere2020JB021024
Pages (from-to)1-24
Number of pages24
JournalJournal of Geophysical Research: Solid Earth
Volume126
Issue number3
DOIs
Publication statusPublished - Mar 2021

Keywords

  • dynamic fault weakening
  • earthquake/rupture modeling
  • frictional heating
  • high-velocity friction
  • seismic cycle
  • superplastic flow

Fingerprint

Dive into the research topics of 'Microphysical Modeling of Carbonate Fault Friction at Slip Rates Spanning the Full Seismic Cycle'. Together they form a unique fingerprint.

Cite this