Microbial transformations of C and N in a boreal forest floor as affected by temperature

P. S.J. Verburg*, D. Van Dam, M. M. Hefting, A. Tietema

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The effects of temperature on N mineralization were studied in two organic surface horizons (LF and H) of soil from a boreal forest. The soil was incubated at 5 °C and 15 °C after adding 15N and gross N fluxes were calculated using a numerical simulation model. The model was calibrated on microbial C and N, basal respiration, and KCl-extractable NH4+, NO3- , 15NH4+ and 15NO3-. In the LF layer, increased temperature resulted in a faster turnover of all N pools. In both layers net N mineralization did not increase at elevated temperature because both gross NH4+ mineralization and NH4+ immobilization increased. In the H layer, however, both gross NH4+ mineralization and NH4+ immobilization were lower at 15 °C than at 5 °C and the model predicted a decrease in microbial turnover rate at higher temperature although measured microbial activity was higher. The decrease in gross N fluxes in spite of increased microbial activity in the H layer at elevated temperature may have been caused by uptake of organic N. The model predicted a decrease in pool size of labile organic matter and microbial biomass at elevated temperature whereas the amount of refractory organic matter increased. Temperature averaged microbial C/N ratio was 14.7 in the LF layer suggesting a fungi-dominated decomposer community whereas it was 7.3 in the H layer, probably due to predominance of bacteria. Respiration and microbial C were difficult to fit using the model if the microbial C/N ratio was kept constant with time. A separate 15N-enrichment study with the addition of glucose showed that glucose was metabolized faster in the LF than in the H layer. In both layers, decomposition of organic matter appeared to be limited by C availability.

Original languageEnglish
Pages (from-to)187-197
Number of pages11
JournalPlant and Soil
Volume208
Issue number2
DOIs
Publication statusPublished - 1 Jan 1999
Externally publishedYes

Keywords

  • N
  • Carbon mineralization
  • Microbial biomass
  • Nitrogen mineralization
  • Temperature effect

Fingerprint

Dive into the research topics of 'Microbial transformations of C and N in a boreal forest floor as affected by temperature'. Together they form a unique fingerprint.

Cite this