Methane oxidation in anoxic lake water stimulated by nitrate and sulfate addition

Sigrid van Grinsven, Jaap S. Sinninghe Damste, Alejandro Abdala Asbun, Julia C. Engelmann, John Harrison, Laura Villanueva

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Methanotrophic bacteria play a key role in limiting methane emissions from lakes. It is generally assumed that methanotrophic bacteria are mostly active at the oxic-anoxic transition zone in stratified lakes, where they use oxygen to oxidize methane. Here, we describe a methanotroph of the genera Methylobacter that is performing high-rate (up to 72 mu M day(-1)) methane oxidation in the anoxic hypolimnion of the temperate Lacamas Lake (Washington, USA), stimulated by both nitrate and sulfate addition. Oxic and anoxic incubations both showed active methane oxidation by a Methylobacter species, with anoxic rates being threefold higher. In anoxic incubations, Methylobacter cell numbers increased almost two orders of magnitude within 3 days, suggesting that this specific Methylobacter species is a facultative anaerobe with a rapid response capability. Genomic analysis revealed adaptations to oxygen-limitation as well as pathways for mixed-acid fermentation and H-2 production. The denitrification pathway was incomplete, lacking the genes narG/napA and nosZ, allowing only for methane oxidation coupled to nitrite-reduction. Our data suggest that Methylobacter can be an important driver of the conversion of methane in oxygen-limited lake systems and potentially use alternative electron acceptors or fermentation to remain active under oxygen-depleted conditions.
Original languageEnglish
Pages (from-to)766-782
Number of pages17
JournalEnvironmental Microbiology
Volume22
Issue number2
DOIs
Publication statusPublished - Feb 2020

Keywords

  • Anaerobic oxidation
  • Fresh-water
  • Sequence
  • Methanotrophs
  • Sediments
  • Monooxygenase
  • Emissions
  • Crenothrix
  • Metabolism
  • Alignment

Fingerprint

Dive into the research topics of 'Methane oxidation in anoxic lake water stimulated by nitrate and sulfate addition'. Together they form a unique fingerprint.

Cite this