Median-point approximation and its application for the study of fermionic systems

D. Makogon, C. Morais Smith

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We consider a system of fermions with local interactions on a lattice (Hubbard model) and apply a novel extension of Laplace's method (saddle-point approximation) for evaluating the corresponding partition function. There, we introduce dual free bosonic fields, with a propagator corresponding to an effective (renormalized) interaction with Maki-Thompson and Aslamazov-Larkin type corrections and beyond, and demonstrate that the superconducting pairing originates as an instability of the effective interaction. We derive the corresponding Bethe-Salpeter equation (instability criterion) and show that the interaction enters the equation only in its effective form to all orders, including the exchange part of the self-energy. An important implication of this result is that the effective interaction always remains finite, even at phase-transition points, directly contradicting the often used assumption of linear relationship between the interaction and susceptibility, established within the random-phase approximation. By analyzing the Bethe-Salpeter equation in the context of unconventional superconductivity, we find that the presence of a flat band close the Fermi level, found in materials such as twisted bilayer graphene, has a twofold favorable impact persisting beyond the weak-coupling approximation: a reduced kinetic energy cost of the gap formation and an increased anisotropy of the effective interaction, favoring a momentum dependent order parameter.

Original languageEnglish
Article number174505
Pages (from-to)1-24
Number of pages24
JournalPhysical Review B
Volume105
Issue number17
DOIs
Publication statusPublished - 1 May 2022

Bibliographical note

Publisher Copyright:
© 2022 American Physical Society.

Keywords

  • Charge-density waves
  • Conserving approximations
  • Electron-systems
  • Normal-state
  • Superconductivity
  • Fluctuation
  • Temperature
  • Coexistence
  • Equation
  • Order

Fingerprint

Dive into the research topics of 'Median-point approximation and its application for the study of fermionic systems'. Together they form a unique fingerprint.

Cite this