Abstract
Measurement bias can be detected using structural equation modeling (SEM), by testing measurement invariance with multigroup factor analysis (Jöreskog, 1971;Meredith, 1993;Sörbom, 1974) MIMIC modeling (Muthén, 1989) or restricted factor analysis (Oort, 1992,1998). In educational research, data often have a nested, multilevel structure, for example when data are collected from children in classrooms. Multilevel structures might complicate measurement bias research. In 2-level data, the potentially “biasing trait” or “violator” can be a Level 1 variable (e.g., pupil sex), or a Level 2 variable (e.g., teacher sex). One can also test measurement invariance with respect to the clustering variable (e.g., classroom). This article provides a stepwise approach for the detection of measurement bias with respect to these 3 types of violators. This approach works from Level 1 upward, so the final model accounts for all bias and substantive findings at both levels. The 5 proposed steps are illustrated with data of teacher–child relationships.
Original language | English |
---|---|
Pages (from-to) | 31-39 |
Number of pages | 9 |
Journal | Structural Equation Modeling |
Volume | 21 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- cluster bias
- measurement bias
- measurement invariance
- multilevel structural equation modeling