MASUR-VEECH VOLUMES AND INTERSECTION THEORY: THE PRINCIPAL STRATA OF QUADRATIC DIFFERENTIALS

Dawei Chen, Adrien Sauvaget, Martin Moeller

Research output: Working paperPreprintAcademic

Abstract

We describe a conjectural formula via intersection numbers for the Masur-Veech volumes of strata of quadratic differentials with prescribed zero orders, and we prove the formula for the case when the zero orders are odd. For the principal strata of quadratic differentials with simple zeros, the formula reduces to compute the top Segre class of the quadratic Hodge bundle, which can be further simplified to certain linear Hodge integrals. An appendix proves that the intersection of this class with ψ-classes can be computed by
Eynard-Orantin topological recursion.
As applications, we analyze numerical properties of Masur-Veech volumes, area Siegel-Veech constants and sums of Lyapunov exponents of the principal strata for fixed genus and varying number of zeros, which settles the corresponding conjectures due to Grivaux-Hubert, Fougeron, and elaborated in [the7]. We also describe conjectural formulas for area Siegel-Veech constants
and sums of Lyapunov exponents for arbitrary affine invariant submanifolds, and verify them for the principal strata.
Original languageEnglish
PublisherarXiv
DOIs
Publication statusPublished - 4 Dec 2019

Fingerprint

Dive into the research topics of 'MASUR-VEECH VOLUMES AND INTERSECTION THEORY: THE PRINCIPAL STRATA OF QUADRATIC DIFFERENTIALS'. Together they form a unique fingerprint.

Cite this