Masters of the manipulator: two new hypocrealean genera, Niveomyces (Cordycipitaceae) and Torrubiellomyces (Ophiocordycipitaceae), parasitic on the zombie ant fungus Ophiocordyceps camponoti-floridani

J.p.m. Araújo, B.m. Lebert, S. Vermeulen, A. Brachmann, R.a. Ohm, H.c. Evans, C. De bekker

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

During surveys in central Florida of the zombie-ant fungus Ophiocordyceps camponoti-floridani, which manipulates the behavior of the carpenter ant Camponotus floridanus, two distinct fungal morphotypes were discovered associated with and purportedly parasitic on O. camponoti-floridani. Based on a combination of unique morphology, ecology and phylogenetic placement, we discovered that these morphotypes comprise two novel lineages of fungi. Here, we propose two new genera, Niveomyces and Torrubiellomyces, each including a single species within the families Cordycipitaceae and Ophiocordycipitaceae, respectively. We generated de novo draft genomes for both new species and performed morphological and multi-loci phylogenetic analyses. The macromorphology and incidence of both new species, Niveomyces coronatus and Torrubiellomyces zombiae, suggest that these fungi are mycoparasites since their growth is observed exclusively on O. camponoti-floridani mycelium, stalks and ascomata, causing evident degradation of their fungal hosts. This work provides a starting point for more studies into fungal interactions between mycopathogens and entomopathogens, which have the potential to contribute towards efforts to battle the global rise of plant and animal mycoses.
Original languageEnglish
Pages (from-to)171-194
Number of pages24
JournalPersoonia: Molecular Phylogeny and Evolution of Fungi
DOIs
Publication statusPublished - 1 Jan 2022

Fingerprint

Dive into the research topics of 'Masters of the manipulator: two new hypocrealean genera, Niveomyces (Cordycipitaceae) and Torrubiellomyces (Ophiocordycipitaceae), parasitic on the zombie ant fungus Ophiocordyceps camponoti-floridani'. Together they form a unique fingerprint.

Cite this