Mass balance of the Antarctic Ice Sheet from 1992 to 2017

Andrew Shepherd, Erik Ivins, Eric Rignot, Ben Smith, Michiel van den Broeke, Isabella Velicogna, Pippa Whitehouse, Kate Briggs, Ian Joughin, Gerhard Krinner, Sophie Nowicki, Tony Payne, Ted Scambos, Nicole Schlegel, A. Geruo, Cecile Agosta, Andreas Ahlstrom, Greg Babonis, Valentina Barletta, Alejandro BlazquezJennifer Bonin, Beata Csatho, Richard Cullather, Denis Felikson, Xavier Fettweis, Rene Forsberg, Hubert Gallee, Alex Gardner, Lin Gilbert, Andreas Groh, Brian Gunter, Edward Hanna, Christopher Harig, Veit Helm, Alexander Horvath, Martin Horwath, Shfaqat Khan, Kristian K. Kjeldsen, Hannes Konrad, Peter Langen, Benoit Lecavalier, Bryant Loomis, Scott Luthcke, Malcolm McMillan, Daniele Melini, Brice Noel, Willem Jan van de Berg, Wouter van der Wal, Melchior van Wessem, Bert Wouters

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.
Original languageEnglish
Pages (from-to)219-222
JournalNature
Volume558
Issue number7709
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'Mass balance of the Antarctic Ice Sheet from 1992 to 2017'. Together they form a unique fingerprint.

Cite this