Manganese-Mediated C–C Bond Formation: Alkoxycarbonylation of Organoboranes

Robbert Van Putten, Georgy A. Filonenko, Annika M. Krieger, Martin Lutz, Evgeny A. Pidko

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Alkoxycarbonylations are important and versatile reactions that result in the formation of a new C-C bond. Herein, we report on a new and halide-free alkoxycarbonylation reaction that does not require the application of an external carbon monoxide atmosphere. Instead, manganese carbonyl complexes and organo(alkoxy)borate salts react to form an ester product containing the target C-C bond. The required organo(alkoxy)borate salts are conveniently generated from the stoichiometric reaction of an organoborane and an alkoxide salt and can be telescoped without purification. The protocol leads to the formation of both aromatic and aliphatic esters and gives complete control over the ester's substitution (e.g., OMe, OtBu, OPh). A reaction mechanism was proposed on the basis of stoichiometric reactivity studies, spectroscopy, and DFT calculations. The new chemistry is particularly relevant for the field of Mn(I) catalysis and clearly points to a potential pathway toward irreversible catalyst deactivation.

Original languageEnglish
Pages (from-to)674-681
Number of pages8
JournalOrganometallics
Volume40
Issue number6
DOIs
Publication statusPublished - 22 Mar 2021

Fingerprint

Dive into the research topics of 'Manganese-Mediated C–C Bond Formation: Alkoxycarbonylation of Organoboranes'. Together they form a unique fingerprint.

Cite this