Making Nd3+ a sensitive luminescent thermometer for physiological temperatures—an account of pitfalls in boltzmann thermometry

Markus Suta, Željka Antić, Vesna Ðorđević, Sanja Kuzman, Miroslav D. Dramićanin, Andries Meijerink

Research output: Contribution to journalArticleAcademicpeer-review


Ratiometric luminescence thermometry employing luminescence within the biological transparency windows provides high potential for biothermal imaging. Nd3+ is a promising candidate for that purpose due to its intense radiative transitions within biological windows (BWs) I and II and the simultaneous efficient excitability within BW I. This makes Nd3+ almost unique among all lanthanides. Typically, emission from the two4F3/2 crystal field levels is used for thermometry but the small ~100 cm−1 energy separation limits the sensitivity. A higher sensitivity for physiological temperatures is possible using the luminescence intensity ratio (LIR) of the emissive transitions from the4F5/2 and4F3/2 excited spin-orbit levels. Herein, we demonstrate and discuss various pitfalls that can occur in Boltzmann thermometry if this particular LIR is used for physiological temperature sensing. Both microcrystalline, dilute (0.1%) Nd3+-doped LaPO4 and LaPO4: x% Nd3+ (x = 2, 5, 10, 25, 100) nanocrystals serve as an illustrative example. Besides structural and optical characterization of those luminescent thermometers, the impact and consequences of the Nd3+ concentration on their luminescence and performance as Boltzmann-based thermometers are analyzed. For low Nd3+ concentrations, Boltzmann equilibrium starts just around 300 K. At higher Nd3+ concentrations, cross-relaxation processes enhance the decay rates of the4F3/2 and4F5/2 levels making the decay faster than the equilibration rates between the levels. It is shown that the onset of the useful temperature sensing range shifts to higher temperatures, even above ~ 450 K for Nd concentrations over 5%. A microscopic explanation for pitfalls in Boltzmann thermometry with Nd3+ is finally given and guidelines for the usability of this lanthanide ion in the field of physiological temperature sensing are elaborated. Insight in competition between thermal coupling through non-radiative transitions and population decay through cross-relaxation of the4F5/2 and4F3/2 spin-orbit levels of Nd3+ makes it possible to tailor the thermometric performance of Nd3+ to enable physiological temperature sensing.
Original languageEnglish
Article number543
Number of pages20
Issue number3
Publication statusPublished - 18 Mar 2020


  • Boltzmann equilibrium
  • In vivo imaging
  • Luminescence thermometry
  • Nd3+
  • Time-resolved spectroscopy


Dive into the research topics of 'Making Nd3+ a sensitive luminescent thermometer for physiological temperatures—an account of pitfalls in boltzmann thermometry'. Together they form a unique fingerprint.

Cite this