Abstract
Magnetic measurements and heavy metal analyses were performed on 133 samples from the urban soils around the East Lake in Wuhan, China. Samples were collected from four areas with different environmental settings: a heavy industrial area well known for thermal power generation and steel works; villages located in the downwind area of the industrial area; a main road with heavy traffic and roads around the East Lake. Results show that concentrations of magnetic particle and heavy metals in urban topsoils are significantly elevated due to the input of coarser-grained magnetite from industrial (e.g. power generation and steel production) and other anthropogenic activities (e.g. vehicle emissions). Concentration-related magnetic parameters, for example, magnetic susceptibility, saturation isothermal remanent magnetization and anhysteretic remanent magnetization, significantly correlate with the concentration of heavy metals. Moreover, in terms of grain sizes, the magnetic particles of different origins can be efficiently discriminated at the studied region. Therefore, magnetic measurements provide a basis for discrimination and identification of different contamination sources, and can be used as an economic alternative to chemical analysis when mapping heavy metal contamination in urban soil around the East Lake region, Wuhan, China.
Original language | English |
---|---|
Pages (from-to) | 603-612 |
Number of pages | 10 |
Journal | Geophysical Journal International |
Volume | 171 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Nov 2007 |
Keywords
- Contamination
- Heavy metal
- Magnetic properties
- The East Lake
- Urban soil
- Wuhan