Abstract
The formally exact framework of equilibrium Density Functional Theory (DFT) is capable of simultaneously and consistently describing thermodynamic and structural properties of interacting many-body systems in arbitrary external potentials. In practice, however, DFT hinges on approximate (free-)energy functionals from which density profiles (and hence the thermodynamic potential) follow via an Euler-Lagrange equation. Here, we explore a relatively simple Machine-Learning (ML) approach to improve the standard mean-field approximation of the excess Helmholtz free-energy functional of a 3D Lennard-Jones system at a supercritical temperature. The learning set consists of density profiles from grand-canonical Monte Carlo simulations of this system at varying chemical potentials and external potentials in a planar geometry only. Using the DFT formalism, we nevertheless can extract not only very accurate 3D bulk equations of state but also radial distribution functions using the Percus test-particle method. Unfortunately, our ML approach did not provide very reliable Ornstein-Zernike direct correlation functions for small distances.
Original language | English |
---|---|
Article number | 031109 |
Number of pages | 11 |
Journal | APL Materials |
Volume | 9 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2021 |