Abstract
We study the local isomorphism classes, also known as genera or weak equivalence classes, of fractional ideals of orders in étale algebras. We provide a classification in terms of linear algebra objects over residue fields. As a by-product, we obtain a recursive algorithm to compute representatives of the classes, which vastly outperforms previously known methods.
Original language | English |
---|---|
Pages (from-to) | 77-102 |
Number of pages | 26 |
Journal | Journal of Algebra |
Volume | 673 |
DOIs | |
Publication status | Published - 1 Jul 2025 |
Bibliographical note
Publisher Copyright:© 2025 The Author(s)
Funding
The author is supported by NWO grant VI.Veni.202.107. The author thanks Jonas Bergstroem, Valentijn Karemaker and John Voight for comments on a preliminary version of the paper.
Funders | Funder number |
---|---|
NWO | VI.Veni.202.107 |
Keywords
- Genus of an ideal
- Ideal classes
- Local isomorphism classes
- Orders