Abstract
We have investigated the regulation of cell-cycle entry in C. elegans, taking advantage of its largely invariant and completely described pattern of somatic cell divisions. In a genetic screen, we identified mutations in cyd-1 cyclin D and cdk-4 Cdk4/6. Recent results indicated that during Drosophila development, cyclin D-dependent kinases regulate cell growth rather than cell division. However, our data indicate that C. elegans cyd-1 primarily controls G1 progression. To investigate whether cyd-1 and cdk-4 solely act to overcome G1 inhibition by retinoblastoma family members, we constructed double mutants that completely eliminate the function of the retinoblastoma family and cyclin D-Cdk4/6 kinases. Inactivation of lin-35 Rb, the single Rb-related gene in C. elegans, substantially reduced the DNA replication and cell-division defects in cyd-1 and cdk-4 mutant animals. These results demonstrate that lin-35 Rb is an important negative regulator of G1/S progression and probably a downstream target for cyd-1 and cdk-4. However, as the suppression by lin-35 Rb is not complete, cyd-1 and cdk-4 probably have additional targets. An additional level of control over G1 progression is provided by Cip/Kip kinase inhibitors. We demonstrate that lin-35 Rb and cki-1 Cip/Kip contribute non-overlapping levels of G1/S inhibition in C. elegans. Surprisingly, loss of cki-1, but not lin-35, results in precocious entry into S phase. We suggest that a rate limiting role for cki-1 Cip/Kip rather than lin-35 Rb explains the lack of cell-cycle phenotype of lin-35 mutant animals.
Original language | English |
---|---|
Pages (from-to) | 4349-4359 |
Number of pages | 11 |
Journal | Development |
Volume | 128 |
Issue number | 21 |
Publication status | Published - 2001 |
Externally published | Yes |
Keywords
- C. elegans
- CDK
- Cell cycle
- Cip/Kip
- Cyclin
- pRb