Abstract
In this analysis, life cycle environmental burdens and total costs of ownership (TCO) of current (2017) and future (2040) passenger cars with different powertrain configurations are compared. For all vehicle configurations, probability distributions are defined for all performance parameters. Using these, a Monte Carlo based global sensitivity analysis is performed to determine the input parameters that contribute most to overall variability of results. To capture the systematic effects of the energy transition, future electricity scenarios are deeply integrated into the ecoinvent life cycle assessment background database. With this integration, not only the way how future electric vehicles are charged is captured, but also how future vehicles and batteries are produced. If electricity has a life cycle carbon content similar to or better than a modern natural gas combined cycle powerplant, full powertrain electrification makes sense from a climate point of view, and in many cases also provides reductions in TCO. In general, vehicles with smaller batteries and longer lifetime distances have the best cost and climate performance. If a very large driving range is required or clean electricity is not available, hybrid powertrain and compressed natural gas vehicles are good options in terms of both costs and climate change impacts. Alternative powertrains containing large batteries or fuel cells are the most sensitive to changes in the future electricity system as their life cycles are more electricity intensive. The benefits of these alternative drivetrains are strongly linked to the success of the energy transition: the more the electricity sector is decarbonized, the greater the benefit of electrifying passenger vehicles.
Original language | English |
---|---|
Article number | 115021 |
Journal | Applied Energy |
Volume | 269 |
DOIs | |
Publication status | Published - 2020 |
Funding
The authors would like to thank Prof. Alexander Wokaun and Stefan Hirschberg for their comments and guidance, Karin Treyer for her insight into the ecoinvent electricity models, as well as Simon Schneider and Tom Terlouw for their help in data collection. This research was supported by the Swiss Competence Center for Energy Research (SCCER) Efficient Technologies and Systems for Mobility, funded by the Swiss Innovation Agency (Innosuisse), the Volkswagen Group Sustainability Council and the “Enabling a Low-Carbon Economy via Hydrogen and CCS” (ELEGANCY) project. The ELEGANCY, Project No 271498, has received funding from DETEC (CH), BMWi (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco, Equinor and Total, and is co-funded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712. Angelica Mendoza would like to acknowledge the funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 842460.
Keywords
- Battery
- Life cycle assessment
- Passenger cars
- Prospective
- Total costs of ownership